Report on LED Board Thermal Simulation

1	Intro	luction
2	Input	Data
	2.1	Description/ Spec
3	Therr	nal Modelling2
	3.1	Board2
	3.2	Board Size
	3.3	Layer Stackup
	3.4	Materials
	3.5	Drilled holes
	3.6	Environmental and cooling conditions
	3.7	Components
	3.8	Modelling Mechanical Parts
	3.9	Components/Loads Table
	3.9.1	Resistors
	3.9.2	LED model
	3.10	Dynamic conditions
4	TRM	Results
	4.1	<i>Run 1: 24 Volt _1 minute @ 25°C</i> 7
	4.2	<i>Run 2: 18 Volt _10 minutes @ 25°C</i>
	4.3	<i>Run 3: 12,8 Volt _5 minutes @ 85°C</i>

1 Introduction

The software "TRM" (Thermal Risk Management in Electronics") from ADAM Research is calculating x-y-z-t temperatures of a printed circuit board due to component heating and current heating. The detailed layer structure and the conductor pattern are taken into account. The internal heat transport takes place via the heat conduction equation. Heat is dissipated to the outside via a specified heat transfer coefficient or objects with a fixed temperature.

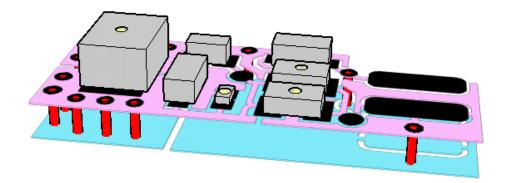
The accuracy of the inputs is also decisive for the accuracy of the simulation. For geometric parameters it is the final copper thickness, for the material parameters it is the thermal conductivity, for the heating the power loss and for the heat dissipation the heat transfer coefficient which describes the measuring situation. More information <u>www.adam-research.com</u>.

Power in LD1 is new in this series

2 Input Data

2.1 Description/ Spec

Run 1: 24 Volt _1 minute @ 25°C P_R1A= 0.48W P_R1B= 0.48W P_LD1= 0.162W


- Run 2: 18 Volt _10 minutes @ 25°C P_R1A= 0.248W P_R1B= 0.248W P LD1= 0.107W
- Run 3: 12,8 Volt _5 minutes @ 85° C P_R1A = 0.099W P_R1B = 0.099W P_LD1 = 0.066W

3 Thermal Modelling

3.1 Board

The board design is output as Gerber, Excellon and IDF from Altium Designer with a special outjob for TRM.

TC-22	1.PrjPcb	- Altium Desi
<u>H</u> elp	TRM	
21.PcbE	A	D2TRM

View of the board in TRM. The yellow circles are thermal couples.

3.2 Board Size

Altium Data	,	TRM model		
19.0 mm x 8.0 mm	Length x:	19	mm	
	Width y:	8	mm	

3.3 Layer Stackup

			Altium Setting	<u>y</u> s	
Top Solder	SM-001		Solder Mask		0.025mm
Top Copper	Plat Tin		Copper plating		0.001mm
Top Layer	CF-004		Signal	1oz	0.035mm
Dielectric 1	Core-043		Core		1.499mm
Bottom Laye	er CF-004	•	Signal	1oz	0.035mm
•	TRM mode	el.	Plating of 25	microns was	added.
	110,1110,0		Thung of 20		, uudeu.

3.4 Materials

"FR4" is not a specific material designation. There are low-conductivity and better-conductivity glass-epoxy mixtures. Neither data about "CF-004" or "Core-043" provided nor found in the internet. We take a typical low thermal conductivity of 0.3 W/Km as worst case assumption.

Data	TRM							
none	Name		FR4\$TRM	Name		Cu\$TRM		
	Tc1	(degC)	20	Tc1	(degC)	20		
	Tcon_x	(W/mK)	0.3	Tcon_x	(W/mK)	350		
	Tcon_z	(W/mK)	0.3	Tcon_z	(W/mK)	350		
	Tc2	(degC)	0	Tc2	(degC)	100		
	Tcon_x2	(W/mK)	0	Tcon_x2	(W/mK)	338		
	Tcon_z2	(W/mK)	0	Tcon_z2	(W/mK)	338		

3.5 Drilled holes

PTH only. Assumed copper plating 25 microns.

3.6 Environmental and cooling conditions

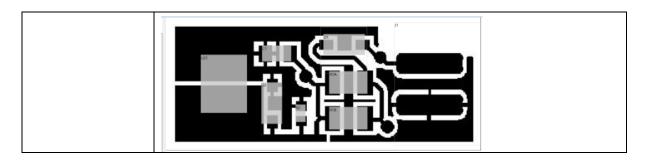
Cooling conditions are not specified by the client.

Assumptions:

Vertically standing.

Free convection + radiation cooling in free space (laboratory-like conditions).

Cooling is described by a uniform heat transfer coefficient (h)


h also depends on the total power loss. The Calculator give an estimate. Example:

Data	TRM						
T -Ambient = $25^{\circ}C$	○ Standard (Calculator see below)						
		face					
	Ambient temperature °C:	25	25				
	Total heat transfer W/m ²	K: 26	26				
Calculator							
			Heat transfer co				
	-	Vertical plate	25.9 W/m²K				
		Horizontal plate	20.7 W/m²K				

3.7 Components

The component footprints and heights are imported as found in the Altium IDF file. Instead of the true size it could happen that the bounding box was found including some clearance. The footprint size determines the heat transfer to the board. In the calculation all components are taken into account except the jumpers J1. We do not want to assume that safe operation depends on heat dissipation/conduction through the plug.

Data	TRM

- 1. The components in TRM are simple cuboids (or cylinders) that are assigned a typical bulk thermal conductivity of 20 W/Km (which we always like to use). However, thermal resistances to the board and to the air can be defined.
- 2. The LED is now a power dissipating component.

R	9	EPN		Dominant te	chnologies
ð,	9	Manufacturer_Part Number_1		DDW-LJG-X1	I-L2
B	9	Parameter 1		*	
	Thermal r	esistance			
	- Junction	/ ambient, R _{th JA}		340	K/W
	- Junction	/ solder point, R _{th JS}		180	K/W
	(Mounting	on FR4 PCB, pad size >= 16 mm ² per pa	ad)		
_					
_			2		20/10/2015 V1.0
0	DOMIN Opto Techn				DDW-LJG-F1P5

Data sheet with $R_{th,JS}$ =180 K/W on the specific test board.

3.8 Modelling Mechanical Parts

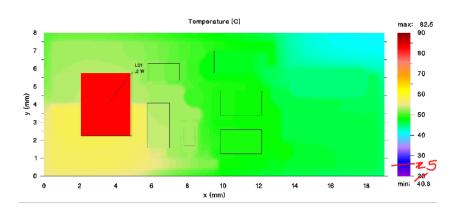
None. No enclosure or housing.

3.9 Components/Loads Table

"Watt"	is the	dissipated	power.	Examp	le Run	1:
--------	--------	------------	--------	-------	--------	----

Index	Name	PosX (mm)	PosY (mm)	DimX (mm)	DimY (mm)	Height (mm)	Begin	End	Material	Form	K/W-board	K/W-air	Watt	c
] 0	FDCA1	9.33	4.63	2.79	2.79	0.6	0	0	Ignore\$TRM	r	-1	-1	0	
] 1	R1B	9.85	1.25	2.3	1.35	0.76	0	0	Comp_diel_hic\$TRM	r	-1	-1	0.48	
] 2	J1	13.8	0.3	5.2	7.4	8.85	0	0	Ignore\$TRM	r	-1	-1	0	
] 3	R2	7.82	1.71	0.6	1.04	0.34	0	0	Comp_diel_hic\$TRM	r	-1	-1	0	
] 4	R1A	9.85	3.4	2.3	1.35	0.76	0	0	Comp_diel_hic\$TRM	r	-1	-1	0.48	
] 5	D2	5.763	1.58	1.25	2.5	0.99	0	0	Comp_diel_loc\$TRM	r	-1	-1	0	
] 6	D1	9.5	5.75	2.5	1.25	0.99	0	0	Comp_diel_loc\$TRM	r	-1	-1	0	
] 7	C1	5.797	5.344	1.77	0.95	0.95	0	0	Comp_diel_loc\$TRM	r	-1	-1	0	
8 [LD1	2.102	2.25	2.8	3.5	1.9	0	0	Cu\$TRM	r	180	-1	0.162	

3.9.1 Resistors


Components in TRM are simple cuboids (or cylinders) that are assigned a typical bulk thermal conductivity. We chose 20 W/m-K (library material Comp_diel_hic\$TRM).

3.9.2 LED model

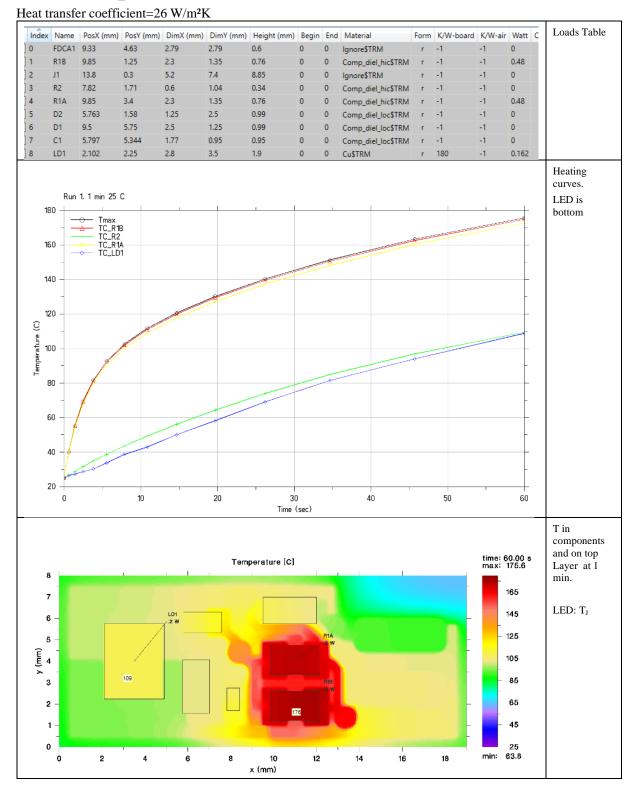
Caution: The LED model is using a thermal resistance $R_{th,J-B} = 180$ K/W. Not necessarily the value applies also to this board if the pad size is different from the one on the test board of the data sheet. The result of T_{LED} in the graphs and plots then is T_J , not $T_{surface}$! The thermal capacity of all components is unknown. We are using guesses.

Test calculation: R1A, R1B=0 W, <u>LD1=0.16 W</u>, steady state, to compare with expectations from the data sheet.

TRM3:	T _J =82 °C (@25 Ambient). Δ T _{JA}	= 57 K
Data sheet:	ΔT_{JA} =340 K/W * 0.16 W	= 54 K
TRM3:	$T_{pad} \approx 55^{\circ}C \rightarrow \Delta T_{J-B} = 82 \ ^{\circ}C - 55 \ ^{\circ}C$	= 27 K
Data sheet:	$\Delta T_{J-pad} = 180 \text{ K/W} * 0.16 \text{ W}$	= 29 K

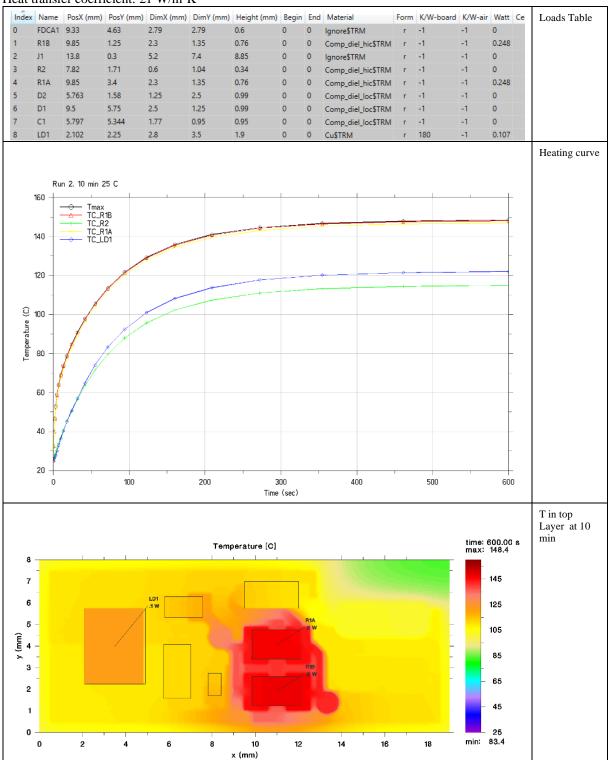
This means: relying on the data sheet, the LED result is compatible.

3.10 Dynamic conditions


As specified. A virtual thermal couple was placed at the center of each component.

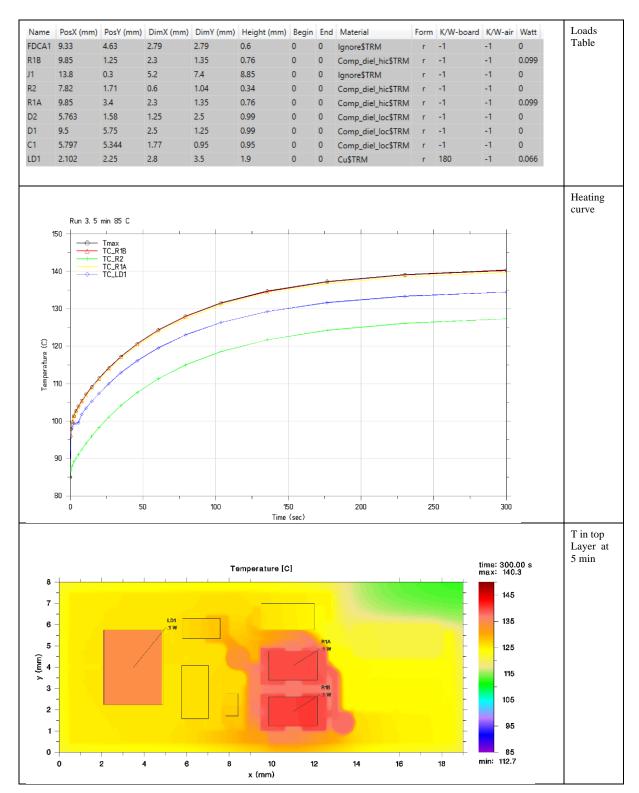
4 TRM Results

The temperature value for the LED in plots and graphs is always the Junction temperature, because $R_{\text{th-JS}}$ was used!


4.1 Run 1: 24 *Volt* _1 *minute* @ 25°*C*

$$P_R1A = 0.48W$$

 $P_R1B = 0.48W$
 $P_LD1 = 0.162W$


4.2 Run 2: 18 Volt _10 minutes @ 25°C P_R1A= 0.248W P_R1B= 0.248W P_LD1= 0.107W

Heat transfer coefficient: 21 W/m²K

4.3 Run 3: 12,8 Volt _5 minutes @ 85°C P_R1A = 0.099W P_R1B = 0.099W P_LD1 = 0.066W

Heat transfer coefficient 19 W/m²K

Remark

Strictly speaking, the calculated temperature values are only valid for these input values. Accurate laboratory data are usually reproduced by TRM with an accuracy of +- 5%. A housing or other power losses will modify the result substantially.